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Abstract— In space exploration, cooperative modulation teclprolonging the life-time of finite energy sources by leveraging
nigues have been proposed for prolonging the life-time of sectsoperative modulation techniqué?]. However, cooperative

sor nodes within a multihop network. The desire to efficienti;modulation techniques rely heavily on the efficient usage of bat-
reduce the overall energy-per-bit of a node motivated this stutdyy power on the local communication links and requires some
on the hop diameter (synonomous to the number of hops istaaring of information, which motivates our investigation into
path) of sensor networks. In this study, we analysed and fouthe communication topologies for energy-efficient broadcast.
that when the number of transmissions are bounded by constants

< 20, the likelihood of successful broadcast is small. Usimghe connectivity among nodes directly influences the efficiency
simulations, we observed that the diameter decreases very &# reliability of information dissemination within a network.

as the transmission radius increases. Another observation is thahventionally, the topology of an ad-hoc network is defined by
the largest connected component emerges when the transtpjgtransmission radiusof each node. Due to the dynamic and
sion radius reache3+/A, whereA is the area containing the ad-hoc nature of such networks, using a fixeahight not ren-
nodes. This may be used to determine the ideal amplificatieiér a connected network at all times. Sometimes, the network is
although further simulations on larger networks could be helgartitioned into several connected components where each com-
ful. We also found a large gap between the number of nodgsnent is a connected sub-network, but there are no connections
required to populate the area, when all the nodes must be cggtween the different sub-networks; we call thipatitioned

nected, or when onl90% of the nodes are connected. network.
TABLE OF CONTENTS In [3], Gupta and Kumar showed that, givemodes such that
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3 GRAPHANALYSIS onymous to the number of nodes approaching infinity. Their
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A becomes more densely populated, the induced communica-
5 AN APPLICATION tion graph tends to be connected.
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In a previous study [4], we examined the alternate extreme of
1 INTRODUCTION [3] and established that the probability of successful broadcast is
In missions that explore the surface of planets, many IigmWln a sparsely po_p_ulated arg]a_Smce the nodes are spar_sely
weight, low energy units such as landers, rovers, and sen %qgced, the probability of obtaining a connected network is low
' ’ ’ S'gacause each node has a restricted communication radius. This

will be used to collect data. The data is collected and forwarded™: .
back to Earth via an orbiter acting as a relay over long har@lotlvated us to look for sparse graphs with guaranteed connec-

links, such as the links typically used in the Deep Space Né'¥ity' A sparse graph conta_lins fewe_r edges, henc, less ir!terfer-
work (DSN). Since the surface units are low energy units, ce. On the other hand, it would imply the need of multi-hop

is essential to minimize each transmitting node’s power. TF@MmMunication, hence, a longer delay. The graphs we consid-

transmission radii must be sufficient to establish a network whEéeg arg the mhm;eT\lqu spe:jnnr:ng t(eg (MST)the relata/ © n_e|gh-
minimizing mutual interference and overall cost. For exampl orhood graph ( ), and the minimum radius graph (minR).

if the nodes of a network need to route each other's pack '[Q’e MST is atreg cor!ngc'Fing all the nodes where the total edge
then each node should ideally transmit with just enough po gpgth of the tree is minimized.

to guarantee the connectivity of the network. ,
The RNG contains edges, where each edge connects two nodes

The concept of collectively utilizing distributed sensor moduléﬁat arg at ILeastlas clost tohealch other a? thzy are (';0 the rest of
in a hierarchical manner was first introducectasperative sen- 1€ nodes. Lek;, [; € R=be the locations of nodes andv; re-

sor networking[1]. An extension of this idea is the concept ofPECtively, where; 7 v;. Formally, the relative neighborhood
graph (RNG) of a node séf in Euclidean space is the graph
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v, € Vsuchthat| I, — 1. || < || ; = ||and| {; — I, || < terfor dense graphs. In extreme cases, the diameter of a sparse
| &; —1; ||, or equivalently, the edge between nodeandv; is  graph withn nodes can be as high as- 1 while the diameter
valid if there does not exists any node closer to hgtandv;.  of a fully connected dense graph is one. However, as [5], [6]
pointed out, many real-world graphs are sparse, but their diam-
Assuming each node must use the same transmission radiugtess are arountbg n. An example is the World Wide Web.
minR graph is obtained by finding the smallest radiughich The number of edges in this real-world graph is closer, tihan
guarantees network connectivity. That is, any transmission ta-(;,). Yet, it was reported that the diameter of the Web is 19
dius smaller tham will result in one or more nodes being iso{5]. The reason that such a enormous graph has such a small
lated from the rest of the nodes. From our previous simuldiameter is because there are short-cut links each spanning a
tions, we found RNG to be a suitable topology for energyarge distance, and each such link contributes only one hop to
efficient communication because it compares favorably to MSiTe diameter. In these graphs, the topologies of the graphs are
and minR in terms of transmission radius, edge density, notidependent of geometric distances and the spatial relationship
degree, fault tolerance, and hop diameter. These graph prapong the nodes. That is, it may be as likely for a node to con-
erties affect the energy usage, scheduling and reliability of thect to its nearby neighbors as it is for the node to connect to
network. distant nodes. In this sense, the Web is similar to random graphs
[7]. Inarandom grapli(n, p) with n nodes, each possible edge
In a wireless network, we want to operate the amplifiers optias the same probabiliy of being chosen. These graphs tend
mally at saturation. On the other hand, assuming a fixed Ethave a regular structure and a diameter proportioniakfa:.
rate, we cannot use a fixed power level if we want to support
a communication topology defined by the RNG because RNg®dwever, random graphs may not be an appropriate model for
contains edges of variable lengths. There is clearly a trade-s#nsor networks. In a sensor network, each node can only com-
between these objectives. municate with other nodes within a bounded radial area. Thus,
we need to incorporate geometric dependencies and spatial re-
In this paper, we approach the problem of balancing the abd@onships when studying the topology of sensor networks. We
mentioned objectives by studying the connectivity structures @fe especially interested in the diameter of sensor networks be-
the communication graphs, assuming a fixed communication gguse this can be used as a lower bound on the number of trans-
diusr for the nodes. We want to know, at which minimum radiuglissions needed for broadcast. Intuitively, the diameter of a sen-
r do we obtain a connected network, or an almost connected rigtt network might be higher thaf(log n) because the trans-
work. Specifically, we are interested in the hop diameter of suBtission radius could restrict the edge lengths, producing longer
networks because it serves as a lower bound on the numbepaihs between nodes. For example, iya x /n grid graph
transmissions required for broadcast from a node to all the otMgiere the nodes are evenly distributed in a square grid and each
nodes. node can only communicate with its left, right, up and down
neighbors, the diameter of such a graphy/is. This is not sur-

We derived graph theoretical analyses, considering two caising, as Kumar has pointed out that the average node degree
gories of graphs. The first category consists of graphs wha¥ewireless networks i£)(log n) and the average diameter is
connectivities are independent of the spatial distribution of tk&(v/n) [8]-

nodes, where the aredis variable. The second category con-

tains graphs whose connectivities are influenced by the spatial 3 GRAPHANALYSIS

distribution of nodes, where is fixed. We analyzed the prob-gyr graph analysis is based on several sets of assumptions.
ability of sparse graphs of nodes and a diametdr Trees are

considered in our analyses as the sparsest connected graphss¥¥tial Independence

obtained a lower bound on the probability of trees having a hlo:p ) .
diameterd. Upper and lower bounds on the probability of conErSt: we considen randomly placed nodes in an ardawhere
nected graphs having a hop diametere also derived. A is a variable and its value is a finite number. The nodes are

assumed to have unique positions, so two nodes cannot share
a common location. The nodes are static (not mobile). The

a fixed square area, and computed the communication gr jque position of a node can be used as the node’s unique la-
topology assuming a transmission radiusrofvheren and el. Therefore, our analysis concerns labeled graphs. In order to

are variables. The resulting data from the simulations are pigfo2dcast from a node to all other nodes successfully, connec-

ted and compared to the plots produced from our graph analydidy of the graph must be guaranteed. Lgbum.on,(n) and
P plots produ trarap yEnumaZl(n) denote the number of connected labeled graphs

and the number of all possible labeled graphsrnonodes re-
spectively. The probability of connectivity for a labeled graph
Thediameter or hop diameter, of a graph is the maximum nunis then Enum onn(n)/Enumg;(n). Combinatorially, each
ber of hops between any pair of nodes using a shortest path cedge is either included or excluded from the graph. In other
necting the nodes. Assuming each edge has length one, the nwords, each edge hassa% chance of being included. Thus,
ber of hops would be the same as the path-length. Usually, Weum,;(n) = 2™, wherem is the number of all possible
expect a larger diameter for sparse graphs and a smaller diagdges. We have nodes, sa  (n — 1) choices of node pairs are

For our simulations, we generatechodes randomly placed in

2 COMMUNICATION TOPOLOGIES



possible. Since the node pdir, y) and the node paify, ) are As depicted in Figure 1, we see that the lower bound on the
represented by the same un-directed edge, the number of all pwebability of a graph having diametéris a weak bound when
sible edges igl*(gi—l)_ S0, Enumgy(n) = 237+(n—=1) |ndeed, the number of nodes is large. However, the plot does provide
this is equivalent to [9, Theorem 15.1] stating that the numberg®me insight into the relative likelihood of the graph topology

labeled graphs with nodes isEnumay;(n) = 2(3). We know With respect to various diameter values.
that a minimally connected graph is a spanning tree. Thus, the o .
number of labeled spanning trees serves as a lower bound on Lower bound probability versus diameter d
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the number of connected labeled graphs. According to [9], the A ne1o
number of labeled trees with node was reported in [10] to be T n=20
n™~2 by Caley over a century ago. This can be used as a lower B e L

bound onEnum. epn(n). S
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Bounded Diameter TreesMotivation to obtain a closed form
solution for the MST leads to the following result.
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Theorem IWeak lower bound diameter likelihood on trees) le20f g

Forn nodes, the probability of generating a tree with diameter

n _qyn—1—d
d is lower bounded b at)(@-1)

1e-25 . . . . . . . . .
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If n > 2d — 1. then we have a tighter lower bound @fwec(n) Fig. 1. Lower bound on the likelihood of a a graph diameterfaodes.
il 1 nn—2
where
We do not know how to compute the exact number of
n 0\ L ‘ Enumeonn, but we can suggest an upper bound.
LBirec(n) = <d+ 1) dd+i-2m (1)
i=1 Bounds on Connected GraphsA necessarycondition for a

Proof of Theorem 1:Consider a connected labeled tree witlgraphG with n nodes to be connected says thamust contain

n nodes. Assume that the diameter of the graph ishere atleast: — 1 edges. Thus, if we subtract the number of graphs

2 < d < n —1, and fix a node such that the diameter of theith less tham—1 edges fronEnum,;;, we get an upper bound

graph contains the node as an end-point; root the tree at tlois Enumcony,. Similarly, we can grow a connected graph by

end-point. adding one node at a time, where the added node must be con-
nected to a node already in the connected graph constructed so

Since there are — 1 nodes that are connected in some configfar. There is only one choice possible when connecting the first

ration, for diametet, we haved + 1 nodes on the diameter. Weand second nodes. For the remaining 2 nodes, we have,

consider the path representing the diameter of the graph as the

core of the tree. Thus, on the core, theredrel possible loca- o) 2 )

tions for then—1—d remaining nodes, where the-1—d nodes Bupper(n) = 212 = Z < i ) ’

are placed with direct connections to the 1 nodes on the core. =t

and
Thus, since each of the — 1 — d nodes can be placed in any
of thed — 1 locations, we have & — 1)"~'~4 scenarios for a 1)z V2 1
diameterd where all cases involve nodes directly connected to Biower(n) = ’ H( - 2k+1) :

thed — 1 nodes on the core. k=1

This quantity does not factor in multi-hop extensions off the

first d — 1 nodes. Thus, we can tighten this lower bound for Lemma ZUpper and Lower bound) . For nodes there ex-
branches extended off the core such that the number of po&&is an upper boundz,,;,e,(n) and lower boundBioyer (1) ON
ble node locations increases by one while the number of avéfle total number of connected graphs.

abL‘iPOdes to be placed reduces by one. Specifically, we h§of of Lemma 2Note that, subtracting the number of graphs
dimy (d—14i— Drtmd=itl = SR d A+ = 2)"7 N With less tham — 1 edges fromEnumg;(n), we get an up-
However, we require > 2d — 1. per bound forEnumeony (n). This is an upper bound because
havingn — 1 or more edges is necessarput not asufficient
We can choose from any of thenodes to construct the initidl  condition for connected graphs. The number of graphs with

diameter, resulting irf ;| ) possible scenarios. nodes and: edges is((%)) according to [9]. Thus, we have

Finally, from [10] we have the total number of treesn%=2, n—2
thus giving us the corresponding bounds stated in the theorem. Enumeonn(n) < o(5) _ Z ((2)) .
- )
=1
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Forn nodes, suppose we connect two nodes. There ar@ys Probabi ity versus k transm ssions

to connect the third node to each of the first two nodes and one * ‘ ‘ ‘ ‘ ‘ ‘ ‘ I
2 -

way to connect to both nodes, or rather, we h&fe+ () = + n=15

2+1 = 3. We can generalize this such that for each ofithe2 1e-05 | ]

remaining nodes, the number of possible connections increases x x

by one where thé'” node, fork = 1,...,n — 2, has a total of x

Zf;l (’“jl) possible connections to the previously conneéted= e x *

nodes. 3 :
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Recall the binomial theorem far + y raised to thex* power o °
may be represented as °
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Knowing that the total number of possible connected graphg. 2. The likelihood of successful broadcast given the number of transmis-
Enumeon,(n) is lower bounded by all possible connections fotions and no knowledge on connectivity for various number of nades
the othem — 2 nodes, and using (2) whete= y = 1, we have

pr obabi
o
o
o
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n=2k41 oy a fixed area 0600% square units, and diagonéd0+/2 units.
Enumeconn(n) > H Z ( . ) Two uniformly distributed random integers are generated as the
k=1 i=1 ! coordinate of each node in 2D. The transmission radii are cho-
n—2 sen as a fraction of the length/width @f. The factors used
= ] -1 are .01,.02,.05,.1,.15,--- ,.85. Since the length/width oft
k=1 is 600, the specific radi used are, 12, 30,60, 90, - - - , 510 re-
n(n_1)—2 T2 1 spectively. Thatis, using a factor ofl, the radius i$00x.01 =
=2 = JJa- ohet) - 6. For eachn, we generatd 000 node sets. Each node set is
k=1 paired with each to obtain a grapltz. Then, we compute the

0 number of connected componentsGn If G contains a single
connected component, then the graph is connected and we com-
grute the diameter off. If G contains more than one connected

Corollary 3 (Weak bound on graph diameter likelihood) . F
component, then we choose the largest connected component

n > 2d — 1, the probability of a graph with diametdiis lower

and compute its diameter.
bounded byL—BB”fﬁgzg. pute s d
Proof of Corollary 3: This can be derived from (1) of Theorem
1 and the upper bound from Lemma 2. g * * * * * L —
w n=20 ---%---
I:l 14 \\ 2238 T
i n=80 --m-
Spatial Dependence L |
Motivated by the work of Gupta and Kumar [3], Jennings and \ %
Okino [4] examined the likelihood of successful broadcast withe | 1
bounded number of transmissions for relatively sparse netwogks. LN
The result plotted in [4] (duplicated here as Figure 2) of the®| N 1
number of transmissions needed was made assuming that all , | ® ]
nodes resided in a variable ardg, such that
4+ i
An > 6m + (27T + 3\/3) (n — 2) 7“2 , (3) ‘15:%3::,:;}.\\\
6 2 F =g 1
and r is the communication radius. We noticed that there iso s x s s x s x
02 03 0.4 05 0.6 0.7 0.8 0.9

striking similarity between the likelihood of such events and the o :

spatial independent plot of Figure 1. ) ) o
Fig. 3. The hop diameter of the graph for specifievith respect ta-, where

r = 0.4 means the actual radius value®oft x 600 = 240, 600 is the width or

4 SIMULATION RESULTS length of the square are&
For our simulation runs we generatedh nodes, randomly
placed in an areal, wheren = 5,10,15,---,100. andA is  Figure 3 shows the hop diameter of a connected graph with

*We have implemented the algorithms in JAVA (version 1.2) on a Sun UItra—ﬂpdes' averaged qver theoo graphs. Clearly, t_he hop diam-
workstation. eter decreases asincreases. Note that, whenis large, we



obtain a connected graph at smallevalues. An interesting we use a radius fraction df.3, there is a high probability of
question is, “for a given radius, what is the minimum number connectivity whenn < 100. We believe that a smaller factor
of nodes required to achieve connectivity?” In Figure 4, we plof r can be used as becomes larger. However, we need to run
the smallest values such that the number of nodes in the largdsirther simulations to verify this.
connected componentisn x v, wherev = .5,.75,.9, 1.0.

Using fixedr values, we observe the largest connected compo-

« ' ® ' ' ' ' o —— nent with respect to hop diameter and Suppose the largest
ol «% fffgfff | connected component hasodes, we defineonnected portion

' as . We usedi 4 different fraction values for, but we choose
orxy 1 toinclude only four representative plots.
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Fig. 4. Minimum number of nodes required to achieve partial connectivity.

Note that, to guarantee connectivityrat= 0.3 requires> 90
nodes. On the other hand, for the sam&e only need to have
> 30 nodes to guarantee th#i% of the nodes are connected in
a single component. So, for applications that do not require all
the nodes to be connected, we can use fewer nodes. In the above
example, we can cut down the number of nodes to one-third.

Fig. 6. Connected portion with = .15.

prob. conn.

o ’/ A

A
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Fig. 5. The fraction of nodes in the largest connected component in graphs
produced by eaclw, r) pair. Fig. 7. Connected portion with = .2.

From Figure 5, we observe thatat= 0.3, a large connected Note that Figures 6-9 all have the similar shape as Figure 1
component emerges very fastasncreases. When > 0.3, where there is a single peak. Figure 6 has a close resemblance
even with a smalh, we still get a large connected componento Figures 1 and 2 becauseraBicreases, the highest connected
This confirms the observations made in Figure 4 So, for rapertion tends to have a smaller diameter value. This can be seen
domly place points using uniform distribution, it seems that By regarding the curves along the x-axis for the different values



per 3600 square units, which has a diagonal6of/2 units. To
determine what fraction this is with respect to a sidel pive get
% 2 = 0.1v/2 ~ 0.1414 which is very close to the value we
used0.15. Expanding on this, if we increase we conjecture
that graph connectivity will occur at < 0.15. On the other

hand, we expect the diameter to increase with respect of

prob. conn.
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5 AN APPLICATION

In [2], Quirk et al. proposed to use cooperative modulation tech-
nigues for long haul relay in space exploration missions where
sensor networks are used on the surface of the planet being
%'®  explored. By sharing the information to be transmitted to the
satellite among the sensor nodes, they can cooperate to reduce
the total energy needed to transmit the data from the surface
of a planet to orbit, thus extending the lifetime of the energy-
restricted sensor nodes. They presented and showed that the
node-selection on orthogonal channels (NSOC) scheme offers
significant energy savings over the non-cooperative communi-
Fig. 8. Connected portion with=.3. cation method. For local communication, they had only con-
sidered line and grid topologies. Our result is applicable to the
NSOC method by considering arbitrary topologies imposed by
random placement of the nodes. For example, knowing the size
of the bounding aread which contains all the sensor nodes,
and the number of sensor nodeswe can obtain the value

such that the resulting graph has a high probability of being
connected (given random placement of nodes with uniform dis-
tribution). Fromr, we can determine the amplifier signal level
needed. Thisin turn implies a communication topology for local
communication among the sensor nodes prior to the cooperative
long-haul communication to the satellite.

T T T T T T T T T
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100 6 CONCLUSION

The desire to efficiently reduce the overall energy-per-bit of a
node motivated this study on the diameter of sensor networks.
Diameters are important because it can be used as lower bound
8 ™0 estimates on the number of transmissions required to broadcast
information. We derived a lower bound on the likelihood of a
tree withn nodes and diametef; in terms ofd andn. We also
Fig. 9. Connected portion with = .80. derived an upper bound and a lower bound on the likelihood of a
connected graph with nodes and diameter From these anal-
yses, we estimated the likelihood of successful broadcast in a
of n, and see the highest point shifts to the lefhdacreases. It network ofn nodes where the number of transmissions is fixed.
is also interesting to observe that:as> 0.2, the highest point We observe that when reache<0, the probability of success-
appears to occur on the same diameter value, as shown in Fig-broadcast within a fixed number of transmissions becomes
ures 7-9. This seems to imply that the diameter of the largegtry small.
connected component is around the same value regardless of the
values ofn. It also implies that- is large enough so that theFrom our simulations, we observed that the diameter of a net-
diameter stays at a small constant. In Figures 6-8, we obseysrk decreases very fast as the transmission radius increases.
that the connected portion approaches one axreases. Fig- Specifically, as is increased, the diameter is decreased by a
ure 9 shows that if we use a large> 0.8, then the connected fraction. We also noticed that at= 0.3, we can obtain a con-
portion is one no matter whatis. It also show that the diame-nected graph with as few a8 nodes. If guaranteed connectivity
ter is at one which means the graph is similar to a clique (fulbf all the nodes is not required, we found that fewer nodes are
connected graph). needed to populate the area to have90% of the nodes be-
ing connected. In this initial study, the result seems to suggest
It seems discouraging that the connected portion for smgko that a large connected component emerges=at0.3. Another
low. However, our simulation runs generate at mdstnodes in interesting property observed is that the largest connected com-
an area o860, 000 square units. That means, we have one nogenent seems to have the same diameter regardless of




algorithms for wireless networks.
For future research, we intend to run additional simulations on
largern values to examine whether a large connected compo-Clayton Okino received a BS in
nent would emerge at smaller valuesrofWe will also exam- Electrical Engineering at Oregor
ined whether the largest connected component will still have tBgate University in 1989, and a M
same diameter for larger valuesraf in Electrical Engineering at Sante
Clara University in 1993. From
As another extension to our current work, we propose a ne\@g9 to 1994, he was a Member
metric representing the confidence on connectivity which wee Technical Staff at Applied Sig-
callconnectednesd he concept of connectedness is in the spilifal Technology Sunnyvale, CA. In 1998, he received a Ph.D.
of the work of [11] on currentness for web page access rates amt|lectrical and Computer Engineering from the University of
reliability of information. Forn nodes, we say that the largestCalifornia, San Diego. Since 1998, he has been an assistant
component contains - n nodes for transmission radiaswith  professor in Thayer School of Engineering at Dartmouth Col-
probability.. Specifically, A network is said to have, v, a, )  lege. His research interests are in communication networks and
connectedness if the largest component n nodes are con- wireless networks with emphasis in performance and security.
nected with probabilityy using transmission radius andn is  His other interest include intelligent sensors.
the potential number of nodes in the network. The best case
scenario of connectedness is depicted in Figure 4 whéseot
explicitly characterized and left for future work.
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